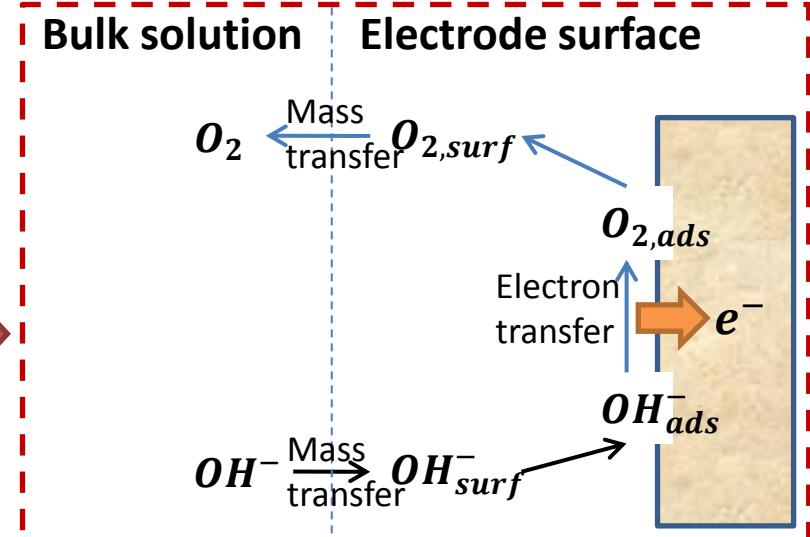
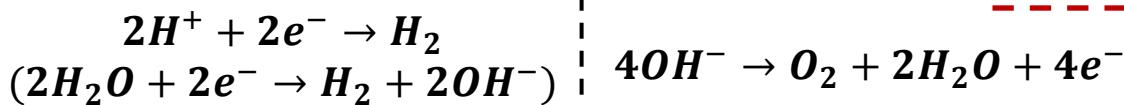
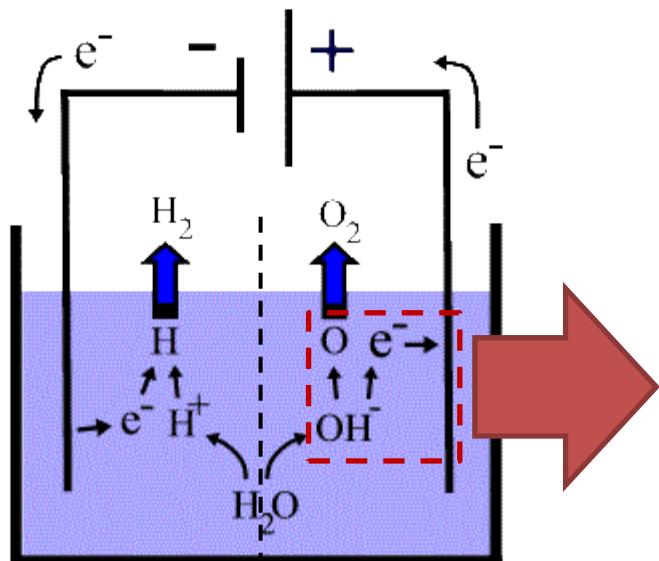


Short Course of Electrochemistry

L1: Thermodynamics and Faraday's Law

王丞浩 副教授

國立臺灣科技大學材料系

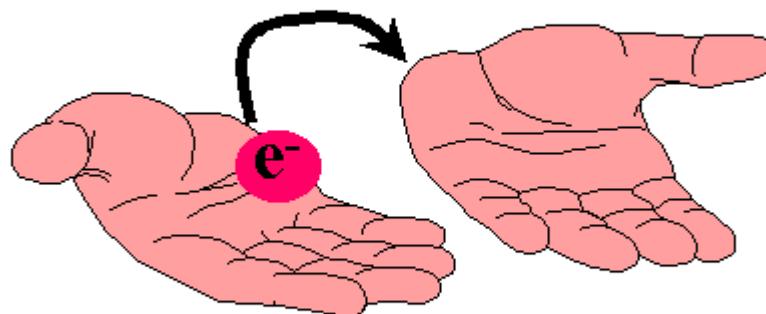



chwang@mail.ntust.edu.tw

Thermodynamics of Electrochemistry

Electrochemistry

- Electrochemistry concerns with the **interrelation** of **electrical** and **chemical** effects.

Water Electrolyzer

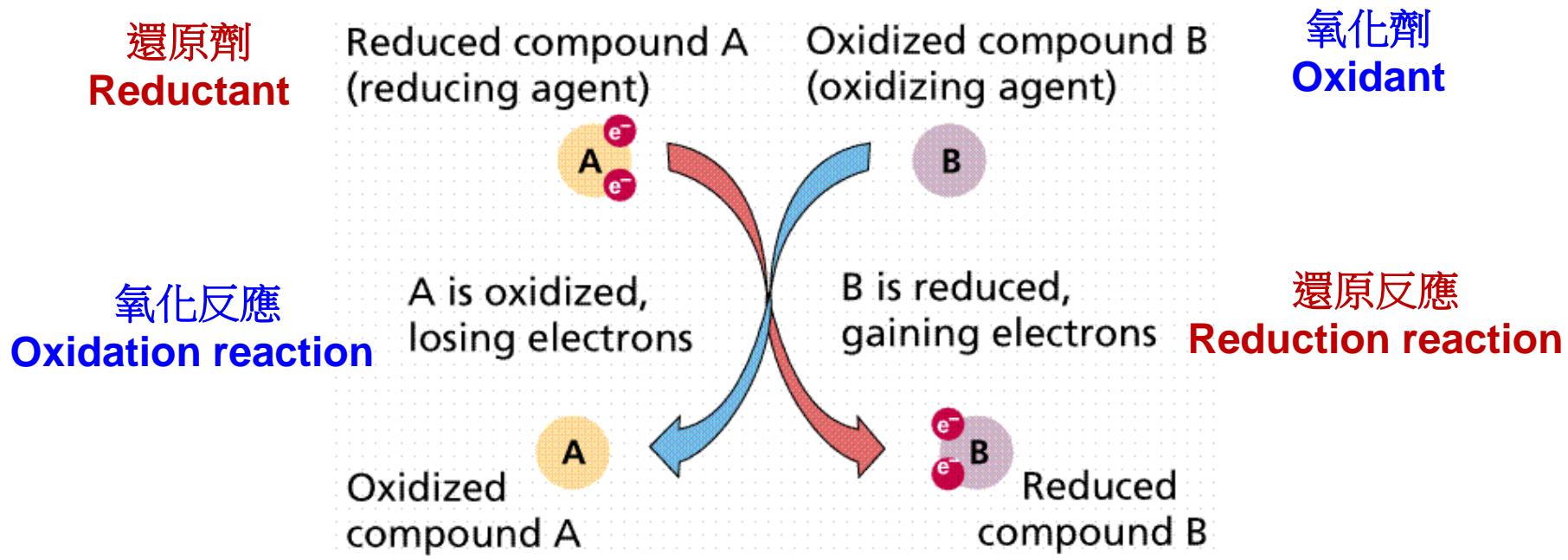

Electrochemical Principal

Oxidation and Reduction! = Redox reaction

Oxidation (anode) - an increase in oxidation number

Reduction (cathode) - a decrease in oxidation number

Where there is oxidation,
there is reduction



Substance oxidized
loses electron(s)

Substance reduced
gains electron(s)

Oxidation and Reduction

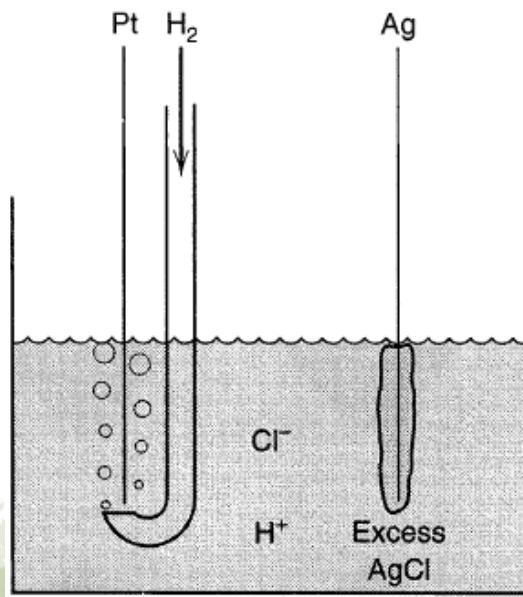
= Redox reaction

Electrochemical Applications

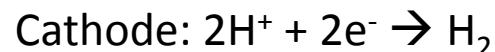
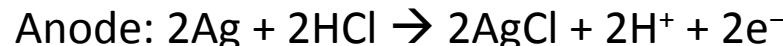
- **Energy conversion and storage**
 - Primary battery, secondary battery, fuel cell, supercapacitor
- **Analytical electrochemistry**
 - Linear sweep voltammetry, cyclic voltammetry, stripping voltammetry, impedance analysis
- **Metal electro-deposition and metal dissolution**
- **Corrosion**
 - Electrochemical machining, anodizing
- **Bio-electrochemistry**
- **Organic electrochemistry**
- **Photo-electrochemistry**
- **Dispersion/interface science**

Important Factors in Electrochemistry

- **Thermodynamics:** 热力学
 - Cell potential 電位
 - At equilibrium condition
 - The limits of nature
- **Kinetics:** 動力學
 - Polarization 極化
 - Reaction rate
 - Reaction mechanism
- **Transport phenomena:** 輸送現象
 - Transport of momentum, heat, material, and charge
 - Uniformity
 - Mass and heat balance

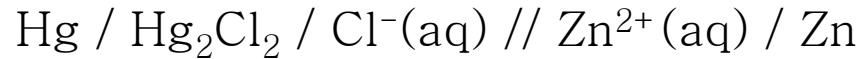

Electrode Process

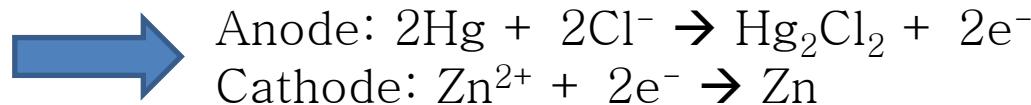
- An understanding of thermodynamic properties associated with electrode processes is fundamental in order to answer questions such as:
 - Why is it that half-reactions in electrochemical cells proceed **spontaneously** in one direction and furnish current?
 - What is the effect of the **salt bridge**?
 - What is the effect of **ion migration**?

Shorthand Notation of EC Cells

- **Anode / Solution A // Solution B / Cathode**
 - “ / ” represents a phase boundary
 - “ // “ or represents a phase boundary which potential drop across the boundary can be negligible.
 - “ , “ separates two components in the same phase


Ag / AgCl / Cl^- // H^+ / H_2 / Pt


Example 1

Example 2

The half reactions are:

Energy and Potential

- The relationship between “energy” and “potential” is:

$$\Delta G = -nFE$$

ΔG : Gibbs free energy

n : Electron-transfer number

E : Potential

- Spontaneous and non-spontaneous
- $\Delta E > 0, \Delta G < 0$... Spontaneous
- $\Delta E < 0, \Delta G > 0$... Non-spontaneous

Standard Reduction Potential, E^0

What are Fe^{3+} and Fe^{2+} concentrations? 1 M?

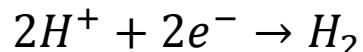
No! They are at unit activity, $a = 1$!

$$a = \gamma \times C$$

a: Activity

γ : Activity coefficient

C: Molar concentration


However, γ is considered of 1 for most cases.

→ Thinking of Formal Potential, $E^{0'}$, see p.52 (Bard)

Table of Standard Reduction Potential

- The standard potentials listed in the table are:
 - Reduction potential
 - vs. SHE.
 - 25 °C
 - Gas=1 atm
 - Ionic activity=1

Hint: The standard hydrogen electrode (abbreviated **SHE**), also called **normal hydrogen electrode (NHE)**. That implies that the pressure of hydrogen gas is 1 atm and the activity of hydrogen ions in the solution is 1 molar.

Thinking of RHE (Reversible hydrogen electrode)!

TABLE C.1 Selected Standard Electrode Potentials in Aqueous Solutions at 25°C in V vs. NHE^a

Reaction	Potential, V
$Ag^+ + e \rightleftharpoons Ag$	0.7991
$AgBr + e \rightleftharpoons Ag + Br^-$	0.0711
$AgCl + e \rightleftharpoons Ag + Cl^-$	0.2223
$AgI + e \rightleftharpoons Ag + I^-$	-0.1522
$Ag_2O + H_2O + 2e \rightleftharpoons 2Ag + 2OH^-$	0.342
$Al^{3+} + 3e \rightleftharpoons Al$	-1.676
$Au^+ + e \rightleftharpoons Au$	1.83
$Au^{3+} + 2e \rightleftharpoons Au^+$	1.36
$p\text{-benzoquinone} + 2H^+ + 2e \rightleftharpoons \text{hydroquinone}$	0.6992
$Br_2(\text{aq}) + 2e \rightleftharpoons 2Br^-$	1.0874
$Ca^{2+} + 2e \rightleftharpoons Ca$	-2.84
$Cd^{2+} + 2e \rightleftharpoons Cd$	-0.4025
$Cd^{2+} + 2e \rightleftharpoons Cd(\text{Hg})$	-0.3515
$Ce^{4+} + e \rightleftharpoons Ce^{3+}$	1.72
$Cl_2(\text{g}) + 2e \rightleftharpoons 2Cl^-$	1.3583
$HClO + H^+ + e \rightleftharpoons \frac{1}{2}Cl_2 + H_2O$	1.630
$Co^{2+} + 2e \rightleftharpoons Co$	-0.277
$Co^{3+} + e \rightleftharpoons Co^{2+}$	1.92
$Cr^{2+} + 2e \rightleftharpoons Cr$	-0.90
$Cr^{3+} + e \rightleftharpoons Cr^{2+}$	-0.424
$Cr_2O_7^{2-} + 14H^+ + 6e \rightleftharpoons 2Cr^{3+} + 7H_2O$	1.36
$Cu^+ + e \rightleftharpoons Cu$	0.520
$Cu^{2+} + 2CN^- + e \rightleftharpoons Cu(CN)_2^-$	1.12
$Cu^{2+} + e \rightleftharpoons Cu^+$	0.159
$Cu^{2+} + 2e \rightleftharpoons Cu$	0.340
$Cu^{2+} + 2e \rightleftharpoons Cu(\text{Hg})$	0.345
$Eu^{3+} + e \rightleftharpoons Eu^{2+}$	-0.35
$\frac{1}{2}F_2 + H^+ + e \rightleftharpoons HF$	3.053
$Fe^{2+} + 2e \rightleftharpoons Fe$	-0.44
$Fe^{3+} + e \rightleftharpoons Fe^{2+}$	0.771
$Fe(\text{CN})_6^{3-} + e \rightleftharpoons Fe(\text{CN})_6^{4-}$	0.3610

(continued)

Free Energy and Cell Potential

$$\star \Delta G_{cell} = -nFE_{cell}$$

Given that, by convention, the half-reaction on the left is considered to be an oxidation and that on the right a reduction we have

$$E_{cell} = E_{right} - E_{left}$$

Cathode Anode

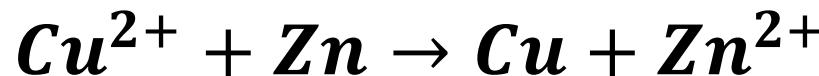
Hint

E_{right} and E_{left} are “reduction potentials”

where E_{right} and E_{left} are the potentials of each half-cell, obtained from the Nernst equation.

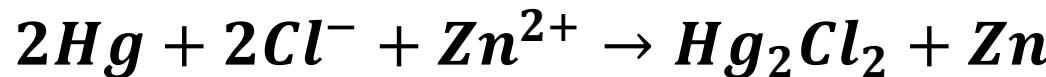
$E_{\text{cell}} < 0$ Non-spontaneous.

$E_{\text{cell}} > 0$ Spontaneous!


Example

$$\Delta G_{cell}^0 = -nFE_{cell}^0 \Rightarrow E_{cell}^0 = -\frac{\Delta G_{cell}^0}{nF}$$

Half-cell reaction:


Zn-Cu battery:

$$E_{cell}^0 = 0.340 - (-0.760) = 1.10 \text{ V}$$

$$\Delta G_{cell}^0 = -2 \times 96485 \times 1.10 = -212 \frac{kJ}{mol}$$

Example

$$E_{cell}^0 = -0.76 - 0.27 = -1.03 \text{ V}$$

$$\Delta G_{cell}^0 = -2 \times 96485 \times -1.03 = 199 \frac{\text{kJ}}{\text{mol}}$$

Example

Wrong Answer:

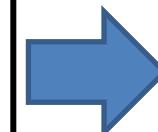
$$E_{cell} = 0.80 \times 2 - 0.34 = 1.26 \text{ V}$$

Correct Answer:

$$E_{cell} = 0.80 - 0.34 = 0.46 \text{ V}$$

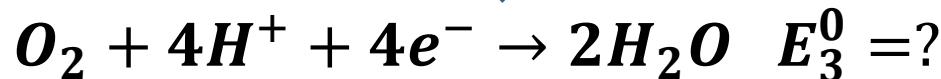
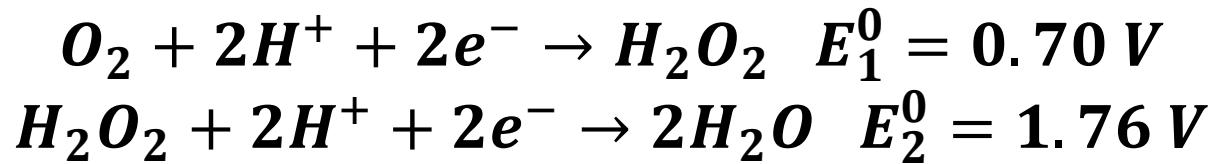
Why?

Calculation from ΔG change



$$2\Delta G_1^0 - 1\Delta G_2^0 = \Delta G_3^0$$

$$2 \times 1FE_1^0 - 1 \times 2FE_2^0 = 2FE_{cell}^0$$

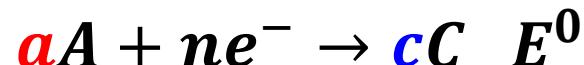


$$2F \times 0.80 - 2F \times 0.34 = 2FE_{cell}^0$$

$$E_{cell}^0 = 0.46 \text{ V}$$

The addition of half-cell reactions to form an overall-cell reaction can be carried out through direct addition of potentials.

Example

Rules for combination of half cell potentials:

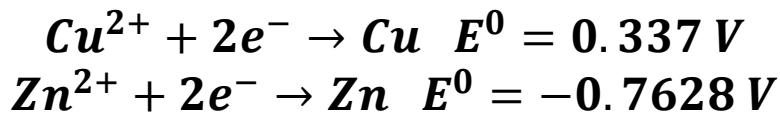

Don't combine each half-cell potential!

You **MUST** combine each Gibbs free energy!

$$\begin{aligned} \Delta G_1^0 + \Delta G_2^0 &= \Delta G_3^0 \\ 2FE_1^0 + 2FE_2^0 &= 4FE_3^0 \\ 2F \times 0.70 + 2F \times 1.76 &= 4FE_3^0 \\ E_3^0 &= 1.23 \text{ V} \end{aligned}$$

Nernst Equation

- the Nernst equation is an equation that relates the cell or the half-cell potential at any point in time to the standard electrode potential, temperature, activity, and reaction quotient of the underlying reactions and species used.
- Case I, half-cell reaction

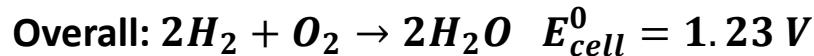
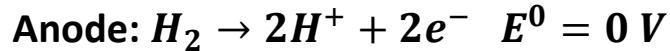

$$E = E^0 + \frac{RT}{nF} \ln \frac{a_A^a}{a_C^c}$$

- Case II, cell reaction

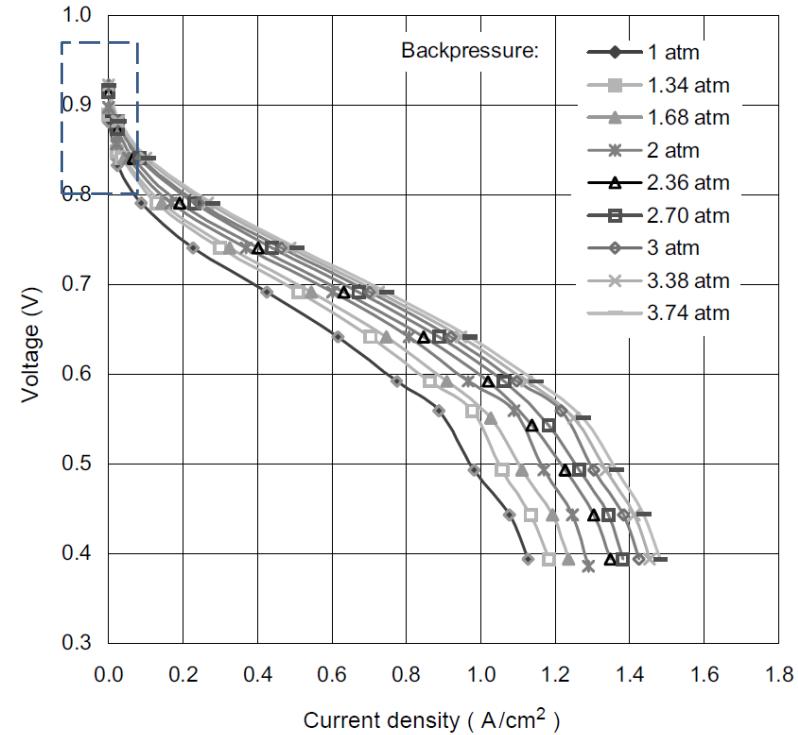
$$E_{cell} = E_{cell}^0 + \frac{RT}{nF} \ln \frac{a_A^a a_B^b}{a_C^c a_D^d}$$

Example: Zn-Cu Battery

If $[\text{Cu}^{2+}] = 0.1 \text{ M}$ and $[\text{Zn}^{2+}] = 1.0 \text{ M}$ at 25°C , what are half-cell potentials and overall-cell potential of Zn-Cu battery? All activity coefficients are equal to unity.



$$E_{\text{Zn}^{2+}/\text{Zn}} = -0.76 + \frac{RT}{2F} \ln[\text{Zn}^{2+}] = -0.76 + \frac{0.05916}{2} \log 1 = -0.76$$

$$E_{\text{Cu}^{2+}/\text{Cu}} = 0.34 + \frac{RT}{2F} \ln[\text{Cu}^{2+}] = 0.34 + \frac{0.05916}{2} \log 10^{-1} = 0.31042$$


$$\frac{RT}{nF} \ln C = \frac{0.05916}{n} \log C$$

$$E_{\text{cell}} = E_{\text{Cu}^{2+}/\text{Cu}} - E_{\text{Zn}^{2+}/\text{Zn}} = [0.34 - (-0.76)] + \frac{RT}{2F} \left(\ln \frac{[\text{Cu}^{2+}]}{[\text{Zn}^{2+}]} \right) = 1.10 + \frac{0.05916}{2} \log \frac{10^{-1}}{1} = 1.07042$$

Concentration Effect on Fuel Cell

$$E_{cell} = E_{cell}^0 + \frac{RT}{nF} \ln \frac{P_{H_2}^2 P_{O_2}}{a_{H_2O}^2}$$

High pressure of H₂/air shows a high performance, but what is the drawback?

Temperature Variation of Nernst Eq'n

$$E_{cell} = E_{cell}^0 + \frac{RT}{nF} \ln \left(\frac{P_{H_2}^2 P_{O_2}}{a_{H_2O}^2} \right)$$

Anode: $H_2 \rightarrow 2H^+ + 2e^- \quad E^0 = 0 \text{ V}$

Cathode: $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O \quad E^0 = 1.23 \text{ V}$

Overall: $2H_2 + O_2 \rightarrow 2H_2O \quad E_{cell}^0 = 1.23 \text{ V}$

- For example, the fuel cell is operated by 1 atm H₂/Air with temperature 25°C. If the cell temperature is increased to specific temperatures, maybe “someone” think that the potential is:
 - 25°C, $E_{cell} = 1.23 + \frac{8.314 \times 298}{4F} \ln(1^2 \times 0.2) = 1.220 \text{ V}$
 - 80°C, $E_{cell} = 1.23 + \frac{8.314 \times 353}{4F} \ln(1^2 \times 0.2) = 1.218 \text{ V}$
 - 600°C, $E_{cell} = 1.23 + \frac{8.314 \times 1073}{4F} \ln(1^2 \times 0.2) = 1.200 \text{ V}$

Are these calculation correct? Not exactly.

Temperature Variation and Gibbs Free Energy

$$E_{cell} = E_{cell}^0 + \frac{RT}{nF} \ln \frac{a_A^a a_B^b}{a_C^c a_D^d}$$

\uparrow

$$E_{cell}^0 \Rightarrow E_{cell}^0(T)$$

The standard cell potential should be changed to the specific temperature from 25°C.

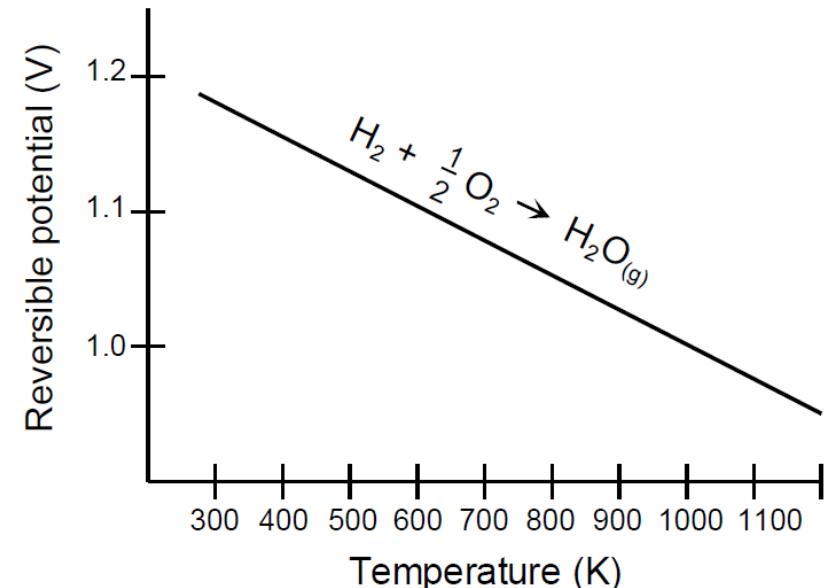
At constant pressure:

$$\because \Delta G^0 = -nFE^0$$

$$\therefore \frac{\partial E^0}{\partial T} = -\frac{1}{nF} \frac{\partial \Delta G^0}{\partial T} = \frac{1}{nF} \Delta S^0$$

Note: 這個運算是簡化的結果，並沒有考慮溫度改變對於熱容量變化的影響。

Temperature Effect on Fuel Cell


- When the product is liquid water:

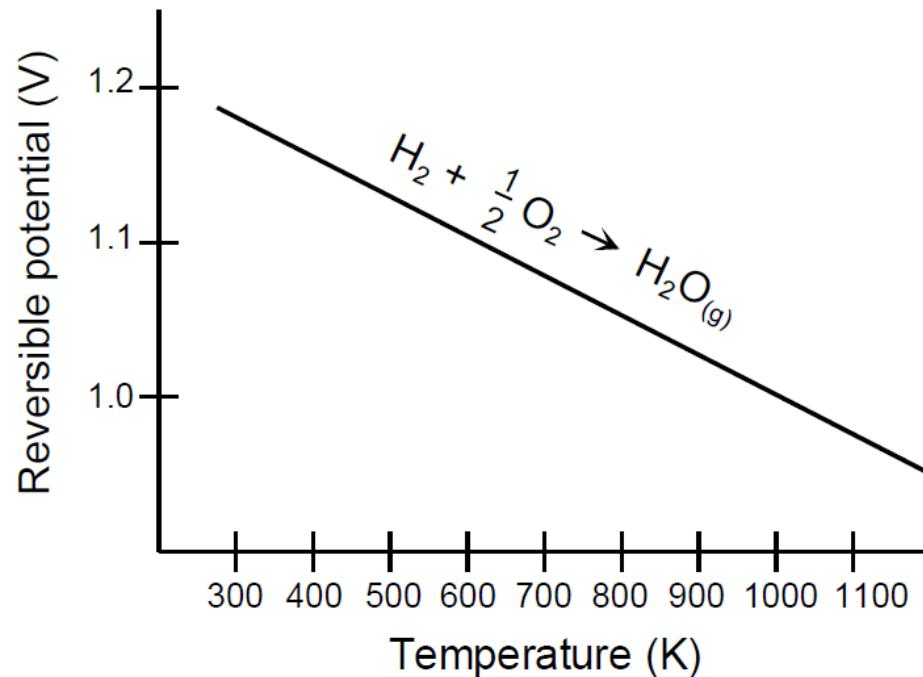
$$\frac{\partial E^0}{\partial T} = \frac{1}{nF} \Delta S^0$$
$$= \frac{1}{4F} [2 \times 69.96 - (2 \times 130.66 + 205.17)]$$
$$= -0.85 \frac{mV}{K}$$

- When the product is vapor water:

$$\frac{\partial E^0}{\partial T} = \frac{1}{nF} \Delta S^0$$
$$= \frac{1}{4F} [2 \times 188.8 - (2 \times 130.74 + 205.25)]$$
$$= -0.23 \frac{mV}{K}$$

		$S^0 @ 298 K$ (J/molxK)
H_2	g	130.66
O_2	g	205.17
H_2O	g	188.84
H_2O	l	69.96

Energy Change and Potential

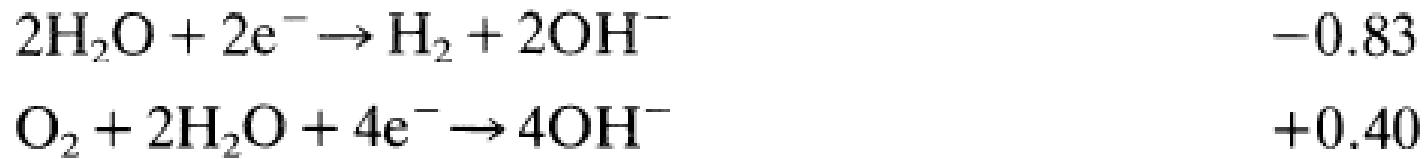

@298.15 K	$\Delta H \left(\frac{kJ}{mol} \right)$	$\Delta S \left(\frac{kJ}{mol K} \right)$	$\Delta G \left(\frac{kJ}{mol} \right)$
$H_2 + \frac{1}{2} O_2 \rightarrow H_2O_{(l)}$	-286.02	-0.1633	-237.34
$H_2 + \frac{1}{2} O_2 \rightarrow H_2O_{(g)}$	-241.98	-0.0444	-228.74

$C_P = a + bT + CT^2$	a	b	c
H_2	28.91404	-0.00084	2.01×10^{-6}
O_2	25.84512	0.012987	-3.90×10^{-6}
$H_2O_{(g)}$	30.62644	0.009621	1.18×10^{-6}

- $\Delta H_T = \Delta H_{298.15} + \Delta a(T - 298.15) + \frac{\Delta b(T^2 - 298.15^2)}{2} + \frac{\Delta c(T^3 - 298.15^3)}{3}$
- $\Delta S_T = \Delta S_{298.15} + \Delta a \ln \left(\frac{T}{298.15} \right) + \Delta b(T - 298.15) + \frac{\Delta c(T^2 - 298.15^2)}{2}$
- $\Delta G_T = \Delta H_T - T\Delta S_T = -nFE \Rightarrow E = -\frac{\Delta G_T}{nF}$

OCP of Fuel Cell

OCP = Open-circuit-potential = Reversible potential


Temperature	25°C (298K)	80°C (353K)	100°C (373K)	205°C (478K)	650°C (923K)	800°C (1073K)	1100°C (1373K)
Cell Type		PEFC	AFC	PAFC	MAFC	ITSOFC	TSOFC
Ideal Voltage	1.18	1.17	1.16	1.14	1.03	0.99	0.91

Water Dissociation, E^0_{water}

Acid solution

Base/Neutral solution

Side Reaction due to Water Dissociation

- Water dissociation potential,
 - $E_{\text{water}}^0 = -1.23 \text{ V}$
- Any applied potential larger than $|1.23| \text{ V}$ is supposed to automatically decompose water.

1	2	3		4	5	6	7	8		9
		Electrode material						U ^{oa}	Volt	
	Battery system	Positive	Negative	Electrolyte	Cell reaction					
Primary batteries										
1	Leclanché	MnO ₂	Zn	Slightly acidic	Zn + 2 · MnO ₂ + 2NH ₄ Cl ⇒ ZnNH ₃ Cl ₂ + Mn ₂ O ₃	1.5	222			≈ 120
2	Manganese alkaline	MnO ₂	Zn	Diluted KOH	Zn + 2 · MnO ₂ + 2 · H ₂ O ⇒ ZnO + Mn ₂ O ₃	1.5	272			≈ 170
3	Silver oxide/zinc	Ag ₂ O	Zn	Diluted KOH	Zn + Ag ₂ O + H ₂ O ⇒ Zn(OH) ₂ + 2Ag	1.6	350			≈ 250
4	Air/zinc (alkaline)	O ₂ (air)	Zn	Diluted KOH	Zn + 1/2O ₂ ⇒ ZnO			1.45		1086
≈ 350										
5	Lithium/ manganese dioxide	MnO ₂	Li	Organ.	Li + Mn ⁽⁺⁴⁾ O ₂ ⇒ Mn ⁽⁺³⁾ O ₂ (Li ⁺)	3.5	1005			≈ 300
6	Thionyl chloride	SOCl ₂ ^d	Li	SOCL ₂	4Li + 2SOCl ₂ ⇒ 4LiCl + S + SO ₂	3.9	1470			≈ 450

Faraday's Law of Electrochemistry

Thinking of Cell Potential

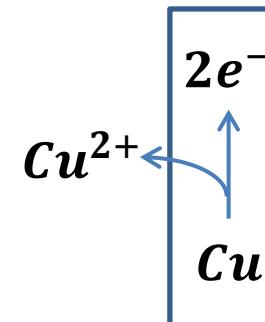
- Cell potential calculated by Nernst equation (or $E_{\text{cell}} = E_{\text{right}} - E_{\text{left}}$) is based on “thermodynamic equilibrium situation”, indicating as follows:
 - No current flows in this experiment ($i = 0$).
 - No net faradaic reaction occurs.
 - Many of the variables (electrode area, mass transfer, electrode geometry) do not affect the potential directly.

Height ~ Gate ~ Water Flow

Potential

Connection

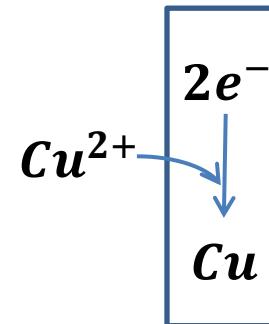
Current


Shimen reservoir
石門水庫

Faraday's law

- The amount of chemical reaction caused by the flow of current **is proportional to** the amount of electricity passed.

$$\frac{dN}{dt} = \frac{1}{nF} \frac{dQ}{dt} = \frac{i}{nF}$$


Question

- During the 4.0 h electrodeposition of copper from a copper sulfate (Cu_SO_4) solution, 140.0 g of Cu was deposited. What was the current flowing through the cell?
- Answer:

$$\frac{dN}{dt} = \frac{i}{nF}$$

$140 \text{ g Cu} \Rightarrow 2.20 \text{ mol Cu}$

$$\frac{2.20}{4 \times 60 \times 60} = \frac{i}{2 \times 96500}$$
$$i = 29.47 \text{ A}$$

